要真正优化 S/TEM 成像,EDX 和 EELS 可能需要在不同加速电压下采集不同信号。规则可能因样品而异,但得到普遍接受的观点是:1) 最佳成像在可能的最高加速电压下完成,高于该电压将发生可见损害;2) EDX,特别是在映射时,会受益于更低电压和增加的电离横截面,从而为给定的总剂量产生更好的信噪比图;3) EELS 在高电压下工作效果最佳,可以避免多重散射,这种散射会在样品厚度增加时降低 EELS 信号。
遗憾的是
Spectra Ultra S/TEM 通过我们的 Ultra-X EDX 探头将 EDX 检测的下一个时代推向市场。Ultra-X 提供的立体角 (>4.45 Sr) 至少为任何其他 EDX 探头解决方案的两倍,其灵敏度在 STEM EDX 分析领域开启了新的能力。即使考虑到分析双倾台的遮挡,立体角也 >4.04 srad
这种高灵敏度的优点体现在使用 Ultra-X 获得的光谱成像质量改善上。图中所示为使用相同的电子剂量 (8.28 x 108 e/Å2) 时,Super-X、Dual-X 和 Ultra-X 之间在分析 DyScO3 样品上的比较。可以很容易地发现原始数据中呈现的信噪比改善。此外,可使用 Ultra-X 直接对氧原子柱成像,Super-X 和 Dual-X 则无法实现。
此外,Ultra-X 的高灵敏度意味着获得相同程度的化学信息,只需其他 EDX 探头解决方案所需电子剂量的一小部分。这为对更多电子束敏感标本进行 STEM EDX 分析以及加快映射速度以获得更稳定的标本开启了可能性。
图 4.从光谱图像中提取的类似谱线轮廓恒明,使用 Ultra-X 获得类似的信噪比只需 Super-X 所需电子剂量的一小部分。标本承蒙康奈尔大学 L.F.Kourkoutis 提供。
采用 Panther STEM 探头系统 Spectra Ultra S/TEM 上的 STEM 成像已经经过重新设计,该系统包括一个新的数据采集架构和两个新的固态八段环形和盘式 STEM 探头(总共 16 段)。新的探头几何结构具有先进的 STEM 成像能力以及测量单个电子的灵敏度。
整个信号经过优化和调整,以极低剂量提供前所未有的信噪比成像能力,便于对电子束敏感性材料进行成像。此外,完全重新开发的数据采集基础架构可以组合不同的单个探头区段,未来可能以任意方式组合检测器区段,生成新的 STEM 成像方法并揭示传统 STEM 技术中不能够获得的信息。该架构还具有可扩展性,并提供了同步多个 STEM 和谱信号的接口。
Spectra Ultra S/TEM 配备了全新 S-TWIN' (S-TWIN Prime) 极靴。S-TWIN' 基于 S-TWIN 设计。它在 STEM 中提供超高空间分辨率(例如,300 kV 下为 50 pm,60 kV 下为 96 pm),并为需要大倾斜角或笨重原位架的实验提供宽间隙。
S-TWIN' 的不同之处在于,它能够支持极高的立体角 EDX 解决方案(请参阅有关 Ultra-X 的部分)而不影响空间分辨率。S-TWIN' 与增强了机械稳定性的底座以及最新的 S-CORR 探针矫正器相结合,与 Spectra 300 TEM 的合并空间分辨率和合并高探针电流规格匹配。